46 research outputs found

    Determinación potenciométrica de constantes de estabilidad de complejos por el método de Ringbom-Harju

    Get PDF
    Tesis - Universidad Complutense de Madrid, 1981.Depto. de Química AnalíticaFac. de Ciencias QuímicasTRUEProQuestpu

    Non-Invasive Breast Cancer Diagnosis through Electrochemical Biosensing at Different Molecular Levels

    Get PDF
    The rapid and accurate determination of specific circulating biomarkers at different molecular levels with non- or minimally invasive methods constitutes a major challenge to improve the breast cancer outcomes and life quality of patients. In this field, electrochemical biosensors have demonstrated to be promising alternatives against more complex conventional strategies to perform fast, accurate and on-site determination of circulating biomarkers at low concentrations in minimally treated body fluids. In this article, after discussing briefly the relevance and current challenges associated with the determination of breast cancer circulating biomarkers, an updated overview of the electrochemical affinity biosensing strategies emerged in the last 5 years for this purpose is provided highlighting the great potentiality of these methodologies. After critically discussing the most interesting features of the electrochemical strategies reported so far for the single or multiplexed determination of such biomarkers with demonstrated applicability in liquid biopsy analysis, existing challenges still to be addressed and future directions in this field will be pointed out

    Magnetic multiwalled carbon nanotubes as nanocarrier tags for sensitive determination of fetuin in saliva

    Get PDF
    This paper reports the development and performance of an electrochemical immunosensor using magnetic multiwalled carbon nanotubes (m-MWCNTs) as nanocarrier tags for the determination of human fetuin A (HFA), a relevant biomarker of obesity, insulin resistance, and type-2 diabetes as well as for pancreatic and liver cancers and inflammatory processes. Screen-printed carbon electrodes were grafted with p-aminobezoic acid and streptavidin was covalently immobilized on the electrode surface. A biotinylated capture antibody was immobilized through streptavidin-biotin interaction and a sandwich assay configuration was implemented using m-MWCNTs conjugated with HRP and anti-HFA antibodies as the detection label. The determination of HFA was accomplished by measuring the current produced by the electrochemical reduction of benzoquinone at -200 mV upon addition of H2O2 as HRP substrate. The prepared m-MWCNTs were characterized by SEM, TEM, XRD and EDS. All the steps involved in the immunosensor preparation were monitored by electrochemical impedance spectroscopy and cyclic voltammetry. A linear calibration plot for HFA was found between 20 and 2000 pg/mL with a LOD value of 16 pg/mL. This performance is notably better than that reported for an ELISA kit and a chronoimpedimetric immunosensor. The favorable contribution of m-MWCNTs in comparison with MWCNTs without incorporated magnetic particles to this excellent analytical performance is also highlighted. The immunosensor selectivity against other proteins and potentially interfering compounds was excellent. In addition, the usefulness of the immunosensor was demonstrated by the analysis of HFA in saliva with minimal sample treatment

    Janus particles for (bio)sensing

    Get PDF
    This review article sheds useful insight in the use of Janus nanoparticles for (bio)sensing in connection with optical and electrochemical transduction. After a brief introduction of the main properties, types and fabrication strategies of Janus nanoparticles, selected applications for their use in electrochemical and optical biosensing are critically discussed. Highlighted examples illustrate the great versatility and interesting possibilities offered by these smart multifunctional nanoparticles for (bio)sensing of relevant analytes operating both in static and dynamic modes. Progress made so far demonstrate their suitability for designing single- or multiplexed (bio)sensing strategies for target analytes of different nature (organic and inorganic compounds, proteins, cells and oligomers) with relevance in clinical (H2O2, glucose, cholesterol, CEA, human IgG, propranolol, bacterial and tumor cells) and environmental (lead and organophosphorous nerve agents) fields. Key future challenges and envisioned opportunities of the use of Janus nanoparticles in the (bio)sensing field are also discussed

    Multiplexed Electrochemical Immunosensors for Clinical Biomarkers

    Get PDF
    Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed

    Electrochemical Magnetic Immunosensors for the Determination of Ceruloplasmin

    Get PDF
    Electrochemical immunosensors for ceruloplasmin (Cp) are reported for the first time. Two configurations involving magnetic beads (MBs) functionalized with Protein A or Streptavidin for immobilization of Cp antibodies were compared, using competitive immunoassay with synthesized alkaline phosphatase-Cp conjugate. Upon capturing MBs-immunoconjugates onto screen-printed carbon electrodes, quantification of Cp was accomplished by DPV measurement of 1-naphthol generated after 1-naphthylphosphate addition. Linear ranges of calibration curves and detection limits were 0.1–1000 µg/mL and 0.040 µg/mL (Protein A-MBs), and 0.025–20 µg/mL and 0.018 µg/mL (Strept-MBs). Good results were obtained in the determination of Cp in spiked human serum samples

    Empowering Electrochemical Biosensing through Nanostructured or Multifunctional Nucleic Acid or Peptide Biomaterials

    Get PDF
    Electrochemical biosensors continue to evolve at an astonishing pace, consolidating as competitive tools for determining a wide range of targets and relentlessly strengthening their attributes in terms of sensitivity, selectivity, simplicity, response time, and antifouling ability, making them suitable for getting a foothold in real-world applications. The design and exploitation of nanostructured or multifunctional nucleic acid or peptide biomaterials is playing a determinant role in these achievements. With the aim of highlighting the potential and opportunities of these biomaterials, this perspective article critically discusses and overviews the electrochemical biosensors reported since 2019 involving nanostructured and multifunctional DNA biomaterials, multifunctional aptamers, modern peptides, and CRISPR/Cas systems. The use of these biomaterials as recognition elements, electrode modifiers (acting as linkers or creating scaffolds with antifouling properties), enzyme substrates, and labeling/carrier agents for signal amplification is discussed through rationally and strategically selected examples, concluding with a personal perspective about the challenges to be faced and future lines of action

    Biodetection Techniques for Quantification of Chemokines

    Get PDF
    Chemokines are a class of cytokine whose special properties, together with their involvement and relevant role in various diseases, make them a restricted group of biomarkers suitable for diagnosis and monitoring. Despite their importance, biodetection techniques dedicated to the selective determination of one or more chemokines are very scarce. For some years now, the critical diagnosis of inflammatory diseases by detecting both cytokine and chemokine biomarkers, has had a strong impact on the development of multiple detection platforms. However, it would be desirable to implement methodologies with a higher degree of selectivity for chemokines, in order to provide more precise information. In addition, better development of biosensor technology applied to this specific field would make it possible to address the main challenges of detection methods for several diseases with a high incidence in the population, avoiding high costs and low sensitivity. Taking this into account, this review aims to present the state of the art of chemokine biodetection techniques and emphasize the role of these systems in the prevention, monitoring and treatment of various diseases associated with chemokines as a starting point for future developments that are also analyzed throughout the article.Depto. de Química AnalíticaFac. de Ciencias QuímicasTRUEMinisterio de Ciencia, Innovación y UniversidadesComunidad de Madridpu

    Electrochemical Immunosensor for Simultaneous Determination of Emerging Autoimmune Disease Biomarkers in Human Serum †

    Get PDF
    Rheumatoid arthritis is an autoimmune disorder characterized by persistent erosive synovitis, systemic inflammation and the presence of autoantibodies, which play an important role in inducing inflammation and joint damage, releasing pro-inflammatory cytokines from monocytes and macrophages [1,2]. Likewise, neutrophil activating protein-2 (CXCL7) is a platelet-derived growth factor belonging to the CXC chemokine subfamily, which is expressed in serum, synovial fluid and synovial tissue of patients developing rheumatoid arthritis during the first twelve weeks, being useful to reflect local pathological changes [3]. Besides, matrix metalloproteinase-3 (MMP-3), which is induced by inflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-α) in rheumatoid synovium, degrades several extracellular matrix components of cartilage and plays central roles in rheumatoid joint destruction [4]. Therefore, monitoring serum CXCL7 and MMP-3 levels is useful for predicting the disease activity in rheumatoid arthritis. In this work, the construction and analytical performance of a dual electrochemical platform for the simultaneous determination of CXCL7 and MMP-3 is described. After the optimization of experimental variables involved in the preparation and implementation of the biosensor, the analytical usefulness of the developed configuration was demonstrated by its application to the determination of these biomarkers in serum samples from healthy individuals and patients with rheumatoid arthritis. To carry out the simultaneous determination of CXCL7 and MMP3 in human serum, just a fifty-fold sample dilution in PBS of pH 7.4 was required. In addition, the results obtained using the dual immunosensor were compared with those provided by the respective ELISA immunoassays, yielding no significant differences between the two methods. It is important to highlight that reagents consumption, four times smaller using the dual immunosensor than that required in the ELISA protocol, and an assay time of 2 h 50 min versus almost 5 h, counted in both cases after incubation of the capture antibody, are advantageous features of the dual immunosensor [5].Depto. de Química AnalíticaFac. de Ciencias QuímicasTRUEMinisterio de Ciencia, Innovación y UniversidadesComunidad de Madridpu
    corecore